

DEPARTMENT OF CHEMISTRY

AMBROSE ALLI UNIVERSITY,

P.M.B. 14, EKPOMA

EDO STATE

NIGERIA

HANDBOOK

FOR

UNDERGRADUATE AND POSTGRADUATE PROGRAMMES

2020/2021 ACADEMIC SESSION TO DATE

DEPARTMENT OF CHEMISTRY

AMBROSE ALLI UNIVERSITY,

EDO STATE,

NIGERIA

HANDBOOK

FOR

UNDERGRADUATE AND POSTGRADUATE PROGRAMMES

2020/2021 ACADECMIC SESSION TO DATE

Preface

The need for a departmental handbook arose when the accreditation team from the Nigerian Universities Commission (NUC) repeatedly insisted that there should be a departmental handbook besides the Faculty handbook. The aim therein stated was to keep the students in the department as informed as possible on the administrative and academic structure of the department and to help to bud and nurture to development the Chemistry culture necessary for professionalism; these attributes cannot be assimilated from the faculty handbook which encompasses diverse interests as many as there are different departments in the Faculty of Physical Sciences.

This handbook therefore, which was developed in 2011/2012 session and printed in 2012/2013 academic session in the first comprehensive and internally generated handbook for chemistry department since its inception in 1982.

I therefore welcome on board all staff and students of Chemistry department; their contributions, suggestions and /or criticisms will always be welcome for the purpose of developing this handbook into a more robust tool for departmental guidance and management.

The handbook succinctly captures and unfolds the departmental vision and aspirations in its statements of Philosophy and Objectives in students' development, and in its policy on academic staff employment.

This handbook encompasses the academic programs, structure, course distribution and description of the undergraduate and postgraduate studies. It therefore provides administrative, regulatory and academic guidelines to undergraduate, postgraduate and postgraduate diploma students. Nevertheless, because of the size of the book which must be kept wieldy, students will need to posses the Faculty or the School of postgraduate studies handbook as may be necessary in order to avail themselves of such information that will enable them interact auspiciously with other departments as required for graduation.

While wishing every student God's guidance in his/her academic pursuit, it is hoped that this handbook will be of immense assistance in this regard.

Dr. E.O Jatto

Ag. Head of Department

HISTORY OF THE PROGRAMMES /DISCIPLINES

The department of chemistry of the Ambrose Alli University, Ekpoma was established in 1982.

It commenced academic activity with the teaching and training of students at undergraduate level for the award of Bachelor's Degree only. In the late 1980s postgraduate programs leading to the award of Master of Science (M.Sc) and Doctor of Philosophy (Ph.D) Degree in Chemistry were introduced.

By 1995, the Department felt formidable enough to mount another undergraduate program besides B.Sc. Chemistry. The Bachelor of Science (B.Sc) Degree in Industrial chemistry was introduced. This same period, diploma programs in industrial chemistry was also introduced. But this was short-lived as the Nigerian University Commission (NUC) scrapped diploma programs in some courses, inclusive of industrial chemistry, in all Nigerian Universities.

Presently, the Department of Chemistry Ambrose Alli University Offers the following degree and postgraduate diploma programs:

- 1. Bachelor of Science (B.Sc) Degree in Chemistry.
- 2. Bachelor of Science (B.Sc) Degree in Industrial Chemistry.
- 3. Postgraduate Diploma in Chemistry.
- 4. Master of Science (M.Sc) Degree in Chemistry.
- 5. Master of Science (M.Sc) Degree in Industrial Chemistry.
- 6. Doctor of Philosophy (Ph.D) Degree in the different areas in Chemistry.

Departmental Policy on Employment of Academic staff.

The policy aims at ensuring appropriate and relevant backgrounds of prospective Academic Staff in the department. Besides the possession of a Masters or a doctorate degree as the case may be, the applicant must posses one of the following as background: at least a second class (honours) lower degree of

- 1. B.Sc Chemistry or Industrial Chemistry
- 2. B.Sc Chemistry education plus a postgraduate diploma.
- 3. B.Sc Biochemistry
- 4. B.Sc Chemical Engineering.

OR at least,

5. Upper Credit Higher National Diploma (HND) Certificate.

ACADEMIC STAFF

S/N	NAME	QUALIFICATIONS	STATUS
1.	Jatto E.O	B.Sc, (Ed)(Ekpoma)	Senior Lecture
		M.Sc,(Benin) Ph.D (Ekpoma)	/Ag. HOD
2.	Egharevba, F.	B.Sc. M.Sc. (Ibadan), Ph.D (Benin).	Professor

3.	Asia, I.O.	B.Sc, MBA(Ekpoma), PGDE, M.Sc, Ph.D (Benin)	Professor
4 5	Osuide, M.O Okojie, V.U	B.Sc, M.Sc, Ph.D, (Uniben) B.Sc (Zaria), M.Sc (Ekpoma) Ph.D (Benin)	Professor Professor
6 7.	Odia, A Egbon, E.E	B.Sc. M.Sc, Ph.D (Ekpoma) B.Sc, (Ed), M.Sc (Benin), Ph.D (Ekpoma)	Professor Reader
8.	lze-lyamu O.K.	B.Sc, M.Sc (Benin), Ph.D (Ekpoma)	Reader
9	Azih, M.C	B.Sc, M.Phil (Benin)	Lecturer I
10.	Chukwuedo, M.E	B.Sc (Ekpoma), PGDCE, M.Sc (Benin)	Lecturer I
11.	*Umarein A.I	B.Sc (Ekpoma), M.Sc (Ekpoma)	Assist. Lecturer
12.	*Shaka, A.	B.Sc (Ekpoma)	Graduate Assistant
13.	Nweke, C. J.	B.Sc (Ekpoma)	Graduate Assistant

*Leave of absence/ study leave

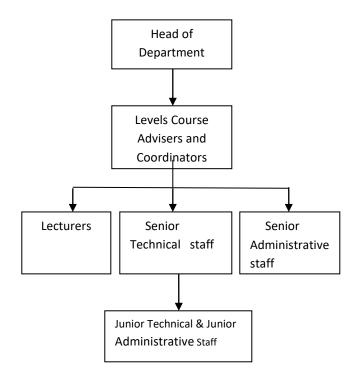
NON-ACADEMIC STAFF

14. Ibizugbe. 0.0.0	HND, (Ilaro)ANIST	Senior Technologist
15. Irabor G.E	HND (PTI, Warri)	Technologist I
16. Ikhide, N.O. NI	D (Enugu), B.Sc (Ekpoma)	Technologist II
17. Barnabas C. B	B.Sc (oturu)	Laboratory Instructor
18. Oseigba, H. I 19. Nkem- Smart, M.O		Secretary to Department Senior Clerical Officer
20. Arebamen, B.	NECO, 2007	Lab. Assistant
21. Ohunyon, B.	Primary Sch. Leaving Cert.	. Snr. M/Cleaner.
22. Ehizutomhin, B.	WAEC, 2014	M./Cleaner

ADMINISTRATION OF PROGRAMMES IN GENERAL.

Personnel Administration.

a) Organization Structure.


The Head of department (HOD) is the academic and administrative Head of the Department. However, there is a Departmental Board of studies with the HOD as chairman, which controls academic programmes at the Departmental level. To facilitate academic & administrative supervision, the following Departmental responsibilities are assigned to specific lecturers:

- i. Examination Officer/committee
- ii. Post- graduate coordinator.
- iii. Admission Officer.
- iv. Curriculum Officer.
- v. Industrial Training Coordinator.
- vi. Seminar Coordinator

- vii. Project (colloquium) Coordinator.
- viii. Time table Coordinator.
- ix. Library officer.
- x. Research & Publication Coordinator.
- xi. Staff Welfare Officer
- xii. Course level Advisers.

Course level advisers serve as Counselors to students at the respective levels under the general coordination of the Head of Department.

Generally, the organizational structure of the department is as shown in the following chart.

DEPARTMENTAL PHILOSOPHY

The department aims particularly at equipping students with the theories, principles and methodologies in Chemistry, necessary for living, capacity building, national development and technological progress in our modern world.

OBJECTIVES

The courses offered in the Department of chemistry have the following objectives. To:

- a) Stimulate in the students sustained interest and enthusiasm in chemistry and applications.
- b) Build in students a culture of continuing enquiry
- c) Provide students with a broad and balanced base of chemical knowledge and practical skills
- d) Develop in students a range of skills applied in chemical and non-chemical areas that can provide confidence for employment
- e) Provide students with a solid base of chemical knowledge and skills that are required for postgraduate studies and research.
- f) Inculcate in students an appreciation of chemistry in all human endeavours.

SECTION A

UNDERGRADUATE PROGRAMMES

ADMISSION REQUIREMENTS

- a) Candidates must possess credit passes at, WASSCE, GCE or NECO (O—Level) in at least five subjects including English Language, Chemistry, Physics, Mathematics and one other subject at not more than two sittings.
- b) The minimum admission requirement for the three year degree programme (direct entry) are GCE 'A' level passes, NCE, ND in chemistry and physics or mathematics in addition to 'O' level requirements.

Students Work Load:

The maximum student work load per session is 48 units; and the minimum full time student's work load is 30 units. The recommended number of units per session [or the normal student] is 48.

Examination Results Scoring and Grading.

Credit unit	Percentage Score	Letters Grade	Grade points (GP)	Weighted grade point (WGP)	*WGPA or Simply sessional GPA.
As assigned	70 – 100	А	5	Unit of course X	Sum of WGP of

to the	60 – 69	В	4	grade point e.g	all courses for
course by	50 – 59	С	3	CHM 101	the year ÷ sum
the	45 – 49	D	2	assuming score	of all course
department	00 – 44	F	0	is B and unit is	units for the
e.g CHM 101				3.	year. i.e
= 3 units.				WGP= 3x5= 15.	Total WGP
					Total units

*WGPA \rightarrow weighted grade point Average.

Pass mark for all courses is 45% made up of 30% Continuous Assessment and 70% Examination Score.

Example: An average 100 level student's result is shown below:

Course Code	Grade	Grade point	WGP
CHM 101	В	4	12
CHM 102	А	5	10
MTH IOI	С	3	9
STA 101	D	2	6
CSC 101	В	4	8
PHY 101	С	3	9
PHY 102	D	2	6
BIO 101	С	3	9
GST 101	В	4	16
GST 102	С	3	6
CHM 112	А	5	15
MTH 112	В	4	12
PHY 103	D	2	4
PHY 111	F	0	0
BIO 111	С	3	9
GST 111	D	2	4
GST 112	D	2	4
Total WGP	= 139		

Total units = 48

For 100 level therefore, the WGPA or sessional GPA = 2.896 (3 decimal places only).

The sessional GPA tells you your performance that year. You can even calculate your semester GPA at the end of each semester. For year II (200 level) do the same for all your courses to get your sessional GPA for that year. Note that this candidate failed PHY 111. This must be registered **first** before any other course(s) in year

WGPA or sessional GPA =168÷48 =3.500 (3 decimal places).

The candidate has improved academically compared with 100 level 2.933. Now, another grading parameter comes in, called the cumulative grade point average (CGPA). The parameter captures as one, the GPA of 100 level and the GPA of 200 level. It is calculated as

48 + 48

140

96

Total WGP for YR I + YR II

Total units taken for YR I + YR II

For our average student above it gives

CGPA = 139 + 168 = 307 = 3.20 (2 decimal places approximation)

For year III (300 level):

Total WGPA = 116.

Total units = 47

Sessional GPA = 2.468 (3 decimal places approximation)

CGPA = Total WGP for YR I + YR II + YR III

= 139 + 168 + 116 = 423 = 3.02 (2 decimal place approximation)

Analysis: with a sessional GPA of 2.468 at 300 level the students performance has dropped compared with 200 level GPA of 3.500. He needs to work harder.

Total units for YR I + YR II + YR III

45 + 48 + 47

The CGPA right from 100 level already places the student in second class lower class of degree (2¹).

For Year IV (400 level):

Total WGPA = 256 Total units = 47

GPA = 4.596

11

sessional

CGPA = 679 = 3.63

<u>Analysis:</u> With a sessional GPA of 4.596, the student has improved greatly compared to YR III. With a CGPA of 3.63, the student did so well that he/she successfully pulled out of second class lower class of degree (2²) to second class upper class of degree (2¹). All levels, 100, 200, 300 and 400 levels contribute equally to a student's class of degree i.e. 25% contribution each.

CLASSIFICATION OF DEGREE

CGPA	CLASS OF DEGREE
4.50 - 5.00	I st Class Honours (I st)
3.50 – 4.49	2 nd Class (Honours) upper division (2 ¹)
2.40 - 3.49	2 nd Class (Honours) lower Division (2 ²)
1.50 – 2.39	3 rd Class Honours (3 rd)
Less than 1.49	Fail.

100 LEVEL B.Sc CHEMISRTY

FIRST SEMESTER

COURSE CODE	TITLE OF COURSE	L	т	Ρ	COURSE CREDIT UNITS.
Core Co	ourses				
CHM 101	General chemistry I	3		3	3
*CHM 102	Practical chemistry	2	-	2	2
CSC 101	Introduction to Computer.	2			2
GST 101	Electricity & Magnetism.	4			4
GST 102	Use of English & Library Philosophy & Logic	2			2
Required	Course				

MTH 101 Algebra & Trigonometry	3			3	
STA 101 Statistics for Physical	3			3	
Sciences and					
Engineering					
PHY 101 General Physics I	3			3	
(Mechanics)					
BIO 101 General Biology I	3			3	
PHY 102 General Physics II	3			3	
(Electricity &					
Magnetism)					
Elective Nil.					
Total				28	
Units					

100 LEVEL SECOND SEMESTER .

COURSE	TITLE OF COURSE	L	Т	Ρ	COURSE	PRE-
CODE					CREDIT	REQUISITE(S)
Core Cour	ses					
CHM	General chemistry II	3			3	
112						
MTH 112	Calculus	3			3	
*PHY	General Physics		3	2	2	
103	Laboratory					
PHY 111	General Physics II	2			2	
GST 111	Nigerian People & Culture	2			2	
GST112	History & Philosophy	2			2	
Required	Courses					
BIO 111	General Biology II	3			3	
Elective Nil						
Total Units 17						
Total Unit	s For Session				45	

* Course run through both semesters.

100 LEVEL B.Sc INDUSTRIAL CHEMISTRY.

FIRST SEMESTER

COURSE CODE	TITLE OF COURSE	L	Т	Р	COURSE CREDIT UNITS.			
Core Co	Core Courses							
CHM 101	General chemistry I	3		3	3			
*CHM 102	Practical chemistry	2	-	2	2			
CSC 101	Introduction to Computer.	2			2			
GST 101	Electricity & Magnetism.	4			4			
GST 102	Use of English & Library Philosophy & Logic	2			2			
Required	Course		·					
MTH 101	Algebra &	3			3			
Trigonom								
	Statistics for Physical Science/Engineering	3			3			
PHY 101	General Physics I (mechanics)	3			3			
BIO 101	General Biology	3			3			
PHY 102 General Physics II Electricity & Magnetism					3			
Elective N	vil.							
Total Units					28			

100 LEVEL SECOND SEMESTER .

COURSE	TITLE OF COURSE	L	Т	Ρ	COURSE	PRE-
CODE					CREDIT	REQUISITE(S)
Core Cour	ses					
CHM	General chemistry II	3			3	
112						
MTH 112	Calculus	3			3	
*PHY	General Physics		3	2	2	
103	Laboratory					
PHY 111	General Physics II	2			2	
GST 111	Nigerian People & Culture	2			2	
GST112	History & Philosophy	2			2	
Required	Courses					
BIO 111	General Biology II	3			3	
GEE 112	Engineering Drawing	2			2	
Elective Nil						
Total Units					19	
Total Unit	s For Session				47	

* Course run through both semesters.

200 LEVEL (B.Sc. CHEMISTRY)

FIRST SEMESTER

COURSE CODE	TITLE OF COURSE	L	Т	Ρ	COURSE CREDIT	PRE- REQUISITE(S)	
Core Courses.							
CHM 201	Physical Chemistry II	3			3	CHM 101	
CHM 202	Inorganic Chemistry II	3			3	CHM 112	
CHM 203	Organic Chemistry II	3			3	CHM 112	
*CHM 204	Experimental chemistry	-	-	3	2	CHM102	
CHM 205	Analytical Chemistry	3			3		
Required C	ourses						
CSC 203	Computer Programming I	3			3		
MTH 205	Elementary Differential	3			3		
	Equation I						
CHM 206	Industrial Chemistry Laboratory	2	-	-	2		
	Laboratory						

Electives				
MTH 201	Mathematical method	3	3	
Total Units			22	

SECOND SEMESTER

COURSE	TITLE OF COURSE	L	Т	Р	COURS	E CREDIT		
CODE								
Core Courses.								
		[1					
CHM 211	Carbohydrate	2			2			
	Chemistry							
CHM 212	Polymer Chemistry I	3			3			
CHM 213	Environmental	2			2			
	Science.							
ENT	Entrepreneurial	3			2			
211/215	Studies							
GST 222	Peace and Conflict	2			3			
	Resolution Studies							
Required C	Courses							
CHM 214	Radio & Nuclear	2			2			
	Chemistry.							
FRH 101	Basic French I	3			3			
Elective CH	IM 215 Industrial Mana	gemer	nt					
Total Units	For Session			16				
Total Units	Total Units For Session 38							

* Course run through both semesters.

200 LEVEL (B.Sc. INDUSTRIAL CHEMISTRY)

FIRST SEMESTER

COURSE CODE	TITLE OF COURSE	L	т	Ρ	COURSE CREDIT	PRE- REQUISITE(S)
Core Cours	es					
CHM 201	Physical Chemistry II	3			3	
CHM 202	Inorganic Chemistry II	3			3	

CHM 203	Organic Chemistry II	3			3	
*CHM	Experimental chemistry	-	-	3	2	
204	Ш					
CHM 205	Analytical Chemistry	3			3	
CHM 206	Industrial Chemistry	2	-	-	2	
	Laboratory					
ENT 211	Entrepreneurial studies					
Required C	ourses					
CSC 203	Computer Programming I	3			3	
MTH 205	Elementary Differential	3			3	
	Equation I					
MTH 201	Mathematical Method	3			3	
Electives						
BCH 201	General biochemistry I	3	3			
Total Units 27						

SECOND SEMESTER

COURSE CODE	TITLE OF COURSE	L	Т	Ρ	COURSE CREDIT	PRE- REQUISITE(S)
Core Cours	Ses .					
CHM 211	Carbohydrate Chemistry	2			3	
CHM 212	Polymer Chemistry I	3			3	
CHM 213	Environmental Science.	2			2	
GST 222	Peace and Conflict	2			3	
	Resolution Studies					
CHM 216	Unit Operation/Process	2			2	
	Chemistry					
Required C	Courses				-	
CHM 214	Radio & Nuclear	2			2	
	Chemistry.					
FRH 101	Basic French I	3			3	
Elective						
BCH 211	General Biochemistry II	3			3	
CSC 215	Computer Programming II	3			3	

Total Units For Session	17	
Total Units For Session	37	

* Course run through both semester.

300 LEVEL (B.Sc CHEMISTRY)

FIRST SEMESTER

					1	
COURSE	TITLE OF COURSE	L	Т	Ρ	COURSE	PRE-
CODE					CREDIT	REQUISITE(S)
Core Course	25					
CHM 301	Physical Chemistry III	3			3	CHM201
CHM 302	Inorganic Chemistry III	3			3	CHM 202
CHM 303	Organic Chemistry III	3			2	CHM 203
*CHM 304	Experimental chemistry III	-	-	3	2	CHM 204
CHM 309	Instrumental Methods of Analysis	3			3	
Required Co	ourses					
CHM 305	Polymer Chemistry II	2	2		2	CHM 212
CHM 306	Petroleum Chemistry	2	2		3	
CHM 307	Organometallic Chemistry	2			2	
CHM 308	Natural Product Chemistry	2			2	CHM 203
CHM 321	Applied Surface & Colloid Chemistry	2			2	
Elective		•				·
CHM 322	Industrial Chemical Proc- essing & Technology I	2			2	
Total					28	
Units						

SECOND SEMESTER

	COURSE CODE	TITLE OF COURSE	L	Т	Р	COURSE CREDIT	PRE- REQUISITE (S)
	CHM 311	Students Industrial Wo	rk -	-	15	15	
		Experience (SIWES)					
	Required C	ourses N	lil				
	Elective	Ν	il				
	Total Units					15	
Total Units For Session		43					

300 LEVEL (B.Sc. INDUSTRIAL CHEMISTRY)

FIRST SEMESTER

COURSE CODE	TITLE OF COURSE	L	Т	Ρ	COURSE CREDIT	PRE- REQUISITE(S)
Core Course	es					
CHM 301	Physical Chemistry III	3			3	CHM201
CHM 302	Inorganic Chemistry III	3			3	CHM 202
CHM 303	Organic Chemistry III	3			2	CHM 203
*CHM 304	Experimental chemistry III	-	-	3	2	CHM 204
CHM 305	Polymer Chemistry II	2	2		2	CHM 212
CHM 306	Petroleum Chemistry	2	2		3	
CHM 309	Instrumental Methods of Analysis	3			3	
CHM 322	Industrial Chemical Processing & Technology I	2			2	
Required Co	ourses					·
CHM 307	Organometallic Chemistry	2			2	
CHM 308	Natural Product Chemistry	2			2	CHM 203
CHM 321	Applied Surface & Colloid Chemistry	2			2	

CHM 322	Industrial chemical procession & Technology I	3		3	
Elective					
Total				28	
Units					

400 LEVEL (B.Sc. CHEMISTRY)

FIRST SEMESTER

COURSE	TITLE OF COURSE	L	Т	Ρ	COURSE	PRE-
CODE					CREDIT	REQUISITE(S)
Core Cours	ses					
CHM 401	Quantum Chemistry/	2			2	CHM 309
	Atomic Physics					
CHM 402	Advanced Chemistry	3			3	CHM 301
	Kinetic					
CHM 403	Advance	2			2	CHM 301
	Electrochemistry					
CHM 405	Organic Synthesis	3	-	3	3	CHM 303
CHM 406	Co – ordination	3			3	CHM 302
	Chemistry					
CHM 407	Applied Spectroscopy	2			2	
CHM 409	Colour Chemistry	3			3	
Required C	Courses					
CHM 408	Environmental	2			2	
	Management					
Electives						
CHM 404	Polymer Technology	3			3	CHM 305
Total Units 18						

SECOND SEMESTER

COURSE	TITLE OF COURSE	L	Т	Ρ	COURSE	PRE-	20
CODE					CREDIT	REQUISITE(S)	20

Core Cours	es					
CHM 410	Research Project		6		6	
CHM 411	Seminar	2			2	
CHM 413	Physical Organic	2			2	CHM 303 &
	Chemistry					308
CHM 414	Natural Product	2			2	CHM 303 &
	Chemistry					308
Required C	ourses					
CHM 412	Group Theory and	2			2	
	Symmetry					
CHM 415	Non-aqueous Solvents	2			2	CHM 302
CHM 415	Non – Aqueous Solvents	2			2	CHM 309
CHM 416	Chemistry of Lanthanides	2			2	CHM 301
	& Actinides					
CHM 418	Molecular Spectroscopy	3			3	CHM 309
CHM 432	Organiometallics				2	CHM 301
	Chemistry II					
CHM 433	Heterocyclic Chemistry	3			3	CHM 303
Elective						
CHM 417	Industrial Chemical	3			3	
	Processing and					
	Technology II					
CHM 434	Quality Control in	2			2	
	Industries					
CHM 435	Chemistry of	2			2	
	Compounding and					
	Production					
CHM 436	Food Processing	3			3	
	Technology					
Total Units					25	
	Total Units For Session43					
COURSE	TITLE OF COURSE	L	т	Ρ	COURSE	PRE-
CODE					CREDIT	REQUISITE(S)
Core Cours				1		
CHM 410	Research Project		6		6	
CHM 411	Seminar	2			2	
CHM 413	Physical Organic	2			2	CHM 303 &

	Chemistry			308
CHM 414	Natural Product	2	2	CHM 303 &
Chemistry				308
Required Courses				
CHM 412	Group Theory and	2	2	
	Symmetry			
CHM 415	Non-aqueous Solvents	2	2	CHM 302
CHM 415	Non – Aqueous Solvents	2	2	CHM 309
CHM 416	Chemistry of Lanthanides	2	2	CHM 301
	& Actinides			
CHM 418	Molecular Spectroscopy	3	3	CHM 309
CHM 432	Organiometallics		2	CHM 301
	Chemistry II			
CHM 433	Heterocyclic Chemistry	3	3	CHM 303
Elective				
CHM 417	Industrial Chemical	3	3	
	Processing and			
	Technology II			
CHM 434	Quality Control in	2	2	
	Industries			
CHM 435	Chemistry of	2	2	
	Compounding and			
	Production			
CHM 436	Food Processing	3	3	
	Technology			
Total Units			25	
Total Units	For Session		43	

400 LEVEL (B.Sc. INDUSTRIAL CHEMISTRY)

FIRST SEMESTER

COURSE	TITLE OF COURSE	L	Т	Ρ	COURSE	PRE-
CODE					CREDIT	REQUISITE(S)
Core Cours	ses					
CHM 402	Advanced Chemistry	3			3	CHM 301
	Kinetic					
CHM 403	Advance	2			2	CHM 301
	Electrochemistry					
CHM 405	Organic Synthesis	3			3	CHM 303
CHM 406	Co – ordination	3			3	CHM 302
	Chemistry					
CHM 407	Applied Spectroscopy	2			3	
Required C	Courses					
Electives						
CHM 404	Polymer Technology	2			2	CHM 305
CHM 408	Environmental					
	Management					
Total Units 21						

SECOND SEMESTER

COURSE	TITLE OF COURSE	L	Т	Ρ	COURSE	PRE-
CODE					CREDIT	REQUISITE(S)
Core Cours	ses					
CHM 410	Research Project		6		6	
CHM 411	Seminar	2			2	
CHM 417	Industrial Chemical	3			3	
	Processing and Technical					
	11					
CHM 418	Molecular Spectroscopy	3			3	CHM 309
CHM 414	Natural Product	2			2	CHM 303 &

	Chemistry				
CHM 435	Chemistry of	2			
	Compounding and				
	production				
CHM 434	Selected Topics in	2			
	Industrial Chemistry				
Required C	Courses				
CHM 432	Organometallics				
	Chemistry		2		
CHM 436	Food Processing				
	Technology		3		
Electives					
CHM 412	Group Theory and	2			
	symmetry				
CHM 413	Physical Organic	2			
	Chemistry				
CHM 415	Non – Aqueous Solvents	2			
CHM 416	Chemistry of	2			
	Lanthanides & Actinides				
CHM 419	Photochemical &	2			
	pencyclic Chemistry				
CHM 433	Heterocyclic Chemistry	2			
Total Units					
Total Units	For Session				

COURSE DESCRIPTION.

1.CHM 101: GENERAL CHEMISTRY 1: (3 UNITS). Atoms, Molecules: Atomic structure; the development of the atomic theory, Electronic configuration, Chemical equations, Stoichiometry. Gases: The gas Laws, The ideal (or perfect)gas equation. Real gases . Critical constants .Chemical equilibrium, Equilibrium constant (Kc and Relationship with the position of equilibrium) Le- Chatellier's principle. Solubility products; partition law; colligative properties; Acid and bases. Thermodynamics: various types of thermodynamic systems. Laws of electrolysis and their applications.

2.CHM 102: PRACTICAL CHEMISTRY: (2 UNITS). Acid – base titrations; Redox titrations, synthesis and preparation of inorganic compounds. Analysis of selected anions and cations. Preparations and qualitative analysis of organic compounds. pH measurement.

			· [· · - · · · · / - · · - · · · · · ·
the periodic table; valence forces, structure of solids, chemis	try of classification of organic compounds, no	omenclature, hor	nologous series; functional
group (e.g alkanes, alkenes, alkynes, alcohols, phenols, thiols,	aldehydes, ketone, carboxylic acids, ether, este	ers, amide, nitrile	es, haloalkanes, sulphoxides
and sulphones. Basic stereochemistry, electronic theory in orga	nic chemistry, saturated hydrocarbons; unsatur	rated hydrocarbo	ons.
4.GEE 112:BASIC ENGINEERING WORKSHOP:(2 UNITS):	Drawing instruments and their uses, lett	ering, types and	d use of lines, geometric
construction (cones, cylinder, pyramids, cubad), tangency loci	, orthographic projection. Introduction to wor	kshop machines	and tools, cutting, shaping
and finishing of wood products. Foundry workshop, moulding, r	netal cutting, shaping.		
5.CHM 201 PHYSICAL CHEMISTRY II (3 UNITS):	Gases: Qualitative treatment of	the Maxwell	distribution of molecular
velocities, mean free path, transport properties of gases; visc	osity, diffusion, calculation of molecular diame	eters from viscos	sity and diffusion data. The
principle of equipartition of energy. Chemical kinetics: rate la	aws,order of reaction (mathematical deviation	n). Arrhenius equ	uation and dependence on
temperature of reaction velocities: chemical Thermodynamic	cs: law of thermo chemistry (Hess's law); he	eat of reactions.	. Energy level diagrams of
exothermic and endothermic reactions, thermochemical calcula	itions.	Phase	e Equilibria: Heterogeneous
equilibrium. Phase rule, phase diagrams. Thermodynamic treat	ment of equilibrium, the Van't Hoff's equation.	The Helmholz eq	uation.
6.CHM 202 INORGANIC CHEMISTRY II (2 UNITS).	Pre-requisite – CHM112.		a). Chemistry of the
main group elements group IA – VIIA: the noble gasses.		b).	Diagonal relationship
chemistry of the transition metals; basic co – theory; comparati	ve chemistry of the following elements.		C). (I) Ga, In Ti
(II) Ge, Sn, Pb (III) As, Sb, Bi (IV) Sr, Te, Po. Elementary introduct	ion to organometallic chemistry: significance of	f metals in bioche	emical systems.
7. CHM 203 ORGANIC CHEMISTRY II (3 UNITS).	Pre- requisite – CHM 112.	Factors	affecting structure and
physical properties of organic compounds; factors affecting di	rectional movements of electrons in organic r	reactions; energy	/ of activation; entrophy of
activation; transition – state theory diagrams; free radical sul	ostitution reactions: in alkenes; organic reacti	ons addition. Eli	mination, nucleophillic and
electrophillic substitutions (displacement); aromaticity illustrate	ed with benzene, aromatic electrophillic and nu	cleaphillic substi	tutions.
8.CHM 204 EXPERIMENTAL CHEMISTRY II (2 UNITS)	Pre-requisite – CHM 102		
The laboratory course consisting of a group of experiments draw	•		
9.CHM 205 ANALYTICAL CHEMISTRY (3 UNITS).	Theory of error; statistical methods in analysi	is; theory of sam	pling; chemical methods of
analysis including volumetric, gravimetric and optical methods.	Introduction to potentiometric, electrolytic, rad	diochemical and	chromatographic methods.
10. CHM 211 CARBOHYDRATE CHEMISTRY (2 UNITS)	Pre-requisite – CHM 112.		
Classification, structure and nomenclature. Chemical propertie	es of monosaccharides, oxidation, reaction in	base: reduction;	Ruff degradation; killiani –
Fischer synthesis. Osazone formation, configurations; epimeriza	ition.		
11. ENT 211 (ENTREPRENEURAL TRAINING I).	THEORY AND P	RACTICE OF ENTI	ERPRENEURIALSHIP.
a) CLARIFICATION OF CONCEPT ASSOCIATION WITH ENTERPREN	EURIALSHIP.		The concept of
entrepreneur, entrepreneurship managers and entrepreneurs.	Distinction	on between and	d a professional manager.
Relationship between entrepreneurship and entrepreneur/cor	porate entrepreneurship.		
	24		
	24		

Periods ,relationship in the table of main Group elements, the periodic law; anomalies in

3.CHM 112: GENERAL CHEMISTRY II: (3 UNITS)

b) THEORIES OF ENTREPRENEURSHIP AND ITS CHARACTERISTICS.

- c) ELEMENTS OF ENTREPRENEURS.Characteristics and qualities of entrepreneurs.Skills required from entrepreneur.Functions/role and scope of entrepreneur. What do you need it for as a student.Skillsrequired from entrepreneur.
- d) RISK AND REWARDS ENTREPRENEURSHIP.
 Risk and reward associated with entrepreneurship.
 Success factors for entrepreneurship.

 entrepreneurship.
 Benefit/contribution of entrepreneurship.
 Success factors for entrepreneurship.
- e)
 ENTREPRENEURSHIP DEVELOPMENT.
 Approaches to entrepreneurial development path.
 Factors
 that

 influence entrepreneurial development.
 Barriers/constraints/problems to entrepreneurial development. Business
 plan and how to write

 business plan, who needs a business plan?
 Need for a Business incubator.
- f)ENTREPRENEURSHIP LAW.Entrepreneurial law overview of Nigeria Legal system.Registrationandregulations of business names, partnerships, companies.Capital and securities offer and subscription of share debentures, preparing prospectuses,Guarantee and indemnities.Scale of Goods: Carriage of goods, Hire Purchase (Equipments leasing);

insurance negotiable instrument and principles of banking law; Bankruptcy and insolvency, consumer protection law and practice. Introduction principle of the law of contract offer, acceptance consideration, vitiation elements.

- 12. CHM 212 POLYMER CHEMISTRY I (2 UNITS). Polymer meaning and nomenclature. Formation of polymers, Types of polymers, Natural Rubber latex; Sources, Collection, Concentration, Quality control test on latex, polymerization reactions, sources of raw materials for polymers, addition and condensation polymerization. Initiators for polymerization reactions. Fibres, meaning and characteristics, synthetic fibres, polyamides (nylon), Polyesters (Dacron), polyacrylonitrile (orion) and isotactic polypropylene.
- **13. CHM 213 ENVIRONMENTAL SCIENCE (2 UNITS).** Concept of elementary cycles. Characteristics of the atmosphere. Elementary treatment of land, air and water pollution. Sources, types and effects of primary air pollutants. Ozone layer as a shield and as a pollutant. Thermal air pollution. Green house gas effect. Economic importance of environmental pollution.
- 14. CHM 214 RADIO AND NUCLEAR CHEMISTRY (2 UNITS).
 Natural radioactivity, fusion, fission decay process, nature of radiation, Nuclear reaction, Principles and measurement of radioactivity. Application of radioactivity. Radiation Hazards.
- 15. CHM 215 INDUSTRIAL MANAGEMENT (3 UNITS). Management definitions, management tools, planning, organizing, directing, staffing e.t.c. management as a science, organizational goal, manufacturing process; job, batch, process and mass production, costing method and Techniques, marginal costing, break even analysis, Budgeting and budgeting control. Variance analysis. Personnel management. Leadership. Capital budgeting and project analysis.
- 16. CHM 301 PHYSICAL CHE MISTRY III (3 UNITS). Pre requisite CHM 201.

Electrochemistry, electrical conduction in solution,Ohm's law, conductance and conductivity, molar and equivalent conductivities. Experimental evaluation of conductivity. Variation of conductivity with concentration, kohlvausch's law of independent migration of ions and it's applications, electrodes and electrode potentials, type of electrode, equilibrium electrochemistry: electrochemical cell, electromotive force (e.m.f), measurement of e.m.f, standard electrode potentials, diagram, the sign convention, cell reaction. The Nernst equation. Equilibrium constants from standard cell. E.m.f concentration cell. Chemical thermodynamics: heat capacities (Cp and Cv) derivation of the expression Cp-Cv = R from principles. Entrophy and free energy. The second law of thermodynamics. Qualitative and quantitative applications of the expression $\Delta G = H\Delta = T\Delta S$ to spontaneity of reaction and

evaluation of entropy changes in phase transition dependence of ΔG on temperature and pressure. The third law of thermodynamics. Statistical thermodynamics. Energy states and levels: Microstates and Macrostates. Thermodynamic probability. The Maxwell Boltzman distribution law. The partition function. The statistical interpretation of entropy. The Bose – Einstein and Femi-Dirac statistics.

17. CHM 302 INORGANIC CHEMISTRY III (3 UNITS).

The noble gases; hydrogen; electronic structure and general properties and comparative study of Group IA and Group IIA elements. Chemistry of boron; carbon and silicon; nitrogen and phosphorus; oxygen and sulphur, the halogens. Transition elements; separation of metals co – ordination chemistry; ligand and crystal field theories; introductory radiochemistry radioactivity and the periodic table. Theories of structure and bonding, physical method of structural spectrochemical series. The nephelauzetic series and the John teller distortion. Stabilization of unusual oxidation states by complex formation. Thermodynamic stability of complex compounds, the stability of complexes, kinetics and mechanisms.

18. CHM 303 ORGANIC CHEMISTRY III (3 UNITS). Pre – requisite CHM 203.

Classification of organic compounds aromatic and alicyclic chemistry. Alcohols: nomenclature, preparation and reactions. Ethers and epoxides; carboxylic acids; nomenclature, preparation and reactions. Amines :nomenclature, preparation and chemical properties. Polyfunctional compounds: heterocyclic chemistry.

19. CHM 304 EXPERIMENTAL CHEMISTRY III (2 UNITS). Pre – requisite CHM 203.

important experiments designed to improve the practical skill of the students and to enhance their understanding of relevant theories. Topics contained in this package ensure a wide coverage of the diverse areas of chemistry.

20. CHM 305 POLYMER CHEMISTRY II (2 UNITS).Pre - requisite CHM 212.Polymerization

mechanism; detailed treatment of addition polymerization. Stereospecific polymerization. Copolymerization phase systems for polymerization. Industrially important thermostatic and thermosetting polymers; polyurethans (spandx). Rubber elasticity, mechanical properties of polymers. Analysis and testing of polymers. Degradation of polymers.

21. CHM 306 PETROLEUM CHEMISTRY (2 UNITS). The consequence of growing energy use; perspectives on energy; energy conservation; petroleum; it's origin and place in the contemporary energy scene; classification, composition of crude oil (petroleum) and natural gas, global distribution of petroleum and natural gas resources (with emphasis on Nigeria's situation); fractions obtained from the distillation of petroleum. Petroleum technology; survey of refinery products and process. Petrochemical industry in Nigeria.

22. CHM 307 ORGANMETALLIC CHEMISTRY I (2 UNITS).

 Pre – requisite CHM 203
 Classification of organometallic compounds; preparation and structure of organometallic compounds.

 compounds.
 Use of organometallic compound in synthesis: organoborane compound, organocadmium compounds, organolithium compounds and organozinc compounds.

23. CHM 308 NATURAL PRODUCTS CHEMISTRY I (2 UNITS). Terpenoids. Isoprene rule. Carotenoids: alkaloids: meaning classification, economic importance; steroids: sex hormones, androgens; estrogens; progestines; contraceptives; adrenocortical steroids; D vitamins; other vitamins e.g. cholic acid and disosgenin; biosynthesis of cholesterol; lipids.

Pre – requisite CHM 202.

Selected

24. CHM 309 INSTRUMENTAL METHODS OF ANALYSIS (3 UNITS)

Introduction to spectroscopy; electromagnetic radiation.

Postulates of quantum

Interaction of electromagnetic radiation with matter. Electromagnetic spectrum, UV and visible spectrophotometry. Infrared, NMR. Mass spectroscopy, Colorimetry. Photometry. Fluorescence method. X – ray. Refractometry and interteferometry, polarimetry. Calorimetry and Polarography.

25. CHM 321 APPLIED SURFACE AND COLLOID CHEMISTRY (2 UNITS). General principles relation to surface . electrical potential, attractive forces, solid – gas interface. Definition of colloids; historical survey of colloid development, Types of colloids; polymers; proteins gels; association colloids, concepts of detergency.

26. CHM 322 INDUSTRIAL CHEMICAL PROCESSING AND TECHNOLOGY I (2 UNITS).

Fundamental principles and problems of industrial chemistry: scope and Research in chemical industry. Survey of Nigeria's industries and their raw materials requirements. Mineral chemistry. Fossils and their uses, plant and animal products. Energy management, nuclear, solar and hydro source of energy. Potential's and application of locally available raw materials as industrial feedstock. Production of primary intermediate and synthesis of industrial organic chemical, polymer, adhesives, dyes, explosives, insecticide, herbicides, flavouring agents and pharmaceuticals, fermentation process. Heat transfer and mass transfer processing unit operations. Some equipment for chemical technology.

27. CHM 311 STUDENTS INDUSTRIAL WORK EXPERIENCE (SIWES) (15 UNITS)

The aim is to expose students to applied and technological aspect of industrial chemistry in any relevant industry or research institution.

28. CHM 401 PHY 308 QUANTUM CHEMISTRY/ ATOMIC PHYSICS (3 UNITS).

theory; operators angular momentum; solution of the hydrogen atom problem. Theory of atomic spectra. Self – consistent field theory. Computational aspects. Perturbation and variation methods. Idea of quantum states, orbital shape and energy. Simple valence theory; electron pair repulsion theory; atomic spectra; determination of molecular shape, bond lengths and angles. The structure and chemistry of some compounds of main group elements Schrodinger equation; helium atom; ground and excited state; spin; Pauli's Exclusion principle; Hund's rule; hydrogen molecule . comparison of molecular orbital and valence bond theory. Concept of resonances and configuration interaction. Coulson Fischer function: molecular orbital for diatomic molecules. Simple pi electron theory. Huckel Theory; walsh rules. Rotational vibrational and electronic spectra; determination of bond length and angles, Russel Saunders coupling; orbital and spin angular momentum; use symmetry in chemistry.

29. CHM 402 ADVANCED CHEMICAL KINETICS (3 UNITS). Pre-requisite CHM 301.

Complex reacton systems; distinction from elementary reactions. Concurrent reactions, opposing reactions, consecutive reactions. Radical reactions, theories of reaction rates – collision theory and absolute (transition state) theory. Relationship between two theories; theory of unimolecular reactions. Lindermain's theory modifications and treatments by Hinshelwood, RRK, Slater phosphorescence, photosensitization. Radiation chemistry. Interaction of radiation with mater, ion and electrons, Radiolysis.

30. CHM 403 ADVANCED ELECTROCHEMISTRY (2 UNITS)Pre-requisite CHM 301.Electrical

double layer, potential at zero charge, polarizable and non polarizable interface, mass transport concentration polarization, fick's law, levie equation, Electronics polarography.

31. CHM 404 POLYMER TECHNOLOGY (3 UNITS). Pre – requisite CHM 303. Large scale

industrial polymerization process. Rubber technology, natural rubber, grades, SBR polymer, polybutadiene rubber, butyl rubber, ethylene propylene rubber. Nitrile rubber ,Silicon rubber, Fluoro - elastomers, Poly-chloroprene rubber, Plastics, properties and application, cellulose plastics,

polycarbonates. Polymer processing; injection, extrusion, compression and transfer moulding of thermoplastics, polymer additives. Polymeric surface coating, adhesives.

32. CHM 405 ORGANIC SYNTHESIS (3 UNITS)

Pre – requisite CHM 303.

Concept of synthesis. Use of basic functional group concepts in complex synthetic schemes. Methods of formation C-H, C-C, C-X and C-N of complex molecules.

33. CHM 406 CO – ORDINATION CHEMISTRY (3 UNITS). Pre – requisite CHM 302.

ordination compounds – definition, application, normencleture, co – ordination formula and isomerism in complexes, stereochemistry of complex molecules. Theories of structure and bonding, physical methods of structural spectro-chemical series. The Nephhelaumzetic series and John Teller distortions. Stabilization of unusual oxidation states by complex formation. Thermodynamic stability of complex compound, the stability complexes, kinetics and mechanisms.

34. CHM 407 APPLIED SPECTROSCOPY (2 UNITS). The course is weighted heavily on the application of various spectroscopic techniques e. g. UV, IR, NMR and mass spectroscopy for structural elucidation of predominantly organic compounds.

35. CHM 408 ENVIRONMENTAL MANAGEMENT (2 UNITS).

Water/wastewater chemistry and analysis, management of solid, liquid and gaseous waste. Composition of waste. Domestic, municipal and industrial. Units processes, physical, chemical, biological and integrated treatment process. Treatment technologies for wastewater and sludge. Chemical and instrumentation in environmental science. Environmental impact assessment.

36. CHM 409 COLOUR CHEMISTRY AND TECHNOLOGY (3 UNITS). Colour and constitution; chemistry theory and properties of dyeing and pigment. Classification of dye and pigment. Some natural dyes and pigment (emphasis on those obtained in the locality). Dyeing mechanisms, preparation and dyeing of natural and synthetic fibers; application of reactive dyes. Colour fastness, property of dyes. Industries based on colour chemistry: dyeing machineries, printing, colouring matter for food, drugs and cosmetics, dyes used in paper industry and colour photography.

37. CHM 410 RESEARCH PROJECT (6 UNITS). An original investigation aimed at involving the students in the investigative approach to science. The research is carried under the supervision of the department and emphasis is placed on advancing a hypothesis, experimental planning and data presentation.

38. CHM 411 SEMINAR (2 UNITS).

39. A critical review of the literature in an area of interest. The course is aimed at giving the students a good knowledge on how to prepare and deliver seminar papesr.

Co -

40. CHM 412 GROUP THEORY AND SYMMETRY (2 UNITS).

Molecular representation. Detailed study of group en, Dn, coov and full rotation group application. General symmetry application. Symmetry of crystal lattices.

41. CHM 413 PHYSICAL ORGANIC CHEMISTRY (2 UNITS). Pre-requisite – CHM 303 and 308.

and reaction of stereoisomers, stereoselective neighbouring group effect, and a few special topic in physical organic chemistry.

42. CHM 414 NATURAL PRODUCTS CHEMISTRY II (2 UNITS) Pre-requisite CHM 303 and 308.

Chemistry of terpenoids; and alkaloids; antibiotic flavonoids; prostaglandin and chlorophils. Other natural products of pharmaceutical importance. General method of isolation; separation; purification and structural determination of the natural products. Classifications. Discussion of chemistry of important members: biogenesis.

43. CHM 415 NON – AQUEOUS SOLVENTS' (2 UNITS). Pre-requisite CHM 302.

Classification and general characteristics, solute interaction. Protonic solvents, oxhalids solvents, liquid halids, Dinitrogen tetraoxide, sulphur dioxide.

44. CHM 416 CHEMISTRY OF LANTHANIDES AND ACTINIDES (2 UNITS).

The elements and the position of the series in the periodic table. Comparison of series. The electronic configuration of their sequence on oxidation states, relationship, magnetic properties and colour. Chemical properties and structure of the elements and their compounds. Recovery and separation of the elements and their compounds.

45. CHM 417 INDUSTRIAL CHEMICAL PROCESSING AND TECHNOLOGY II (3 UNITS).

Pre – requisite – CHM 319. Optimization of operation equilibrium constants and reaction yields: theoretical and practical principles in the management of industrial chemical processes; chemical processing of minerals. Metallurgy and hydrometallurgical processes, industrial electrochemistry, plant technology, Manufacture of some heavy inorganic chemical, Cement and binding materials, Inorganic fertilizer. Hydrogen and carbon monoxide synthesis, gas, oxoprocess, water gas, source of hydrogen and it's application, Industrial inorganic materials. Raw materials, technical and economic principles of process and product routes, Flow's diagram. Selected oils and fats, soaps and detergents, sugar, paints vanishes, plastic wool pulp and paper environmental pollution.

46. CHM 418 MOLECULAR SPECTROSCOPY (3 UNITS).

Quantum theory of microwave. IR, Raman UV Visible and NMR spectroscopy. General introduction to electron spin resonance, Mossbauer effect, nuclear guadruple resonance and other modern techniques.

Pre-requisite – CHM 302.

Pre – requisite – CHM 301, 311 and 401.

Preparation

Review of molecular symmetry operations, definition of groups.

47. CHM 419 PHOTOCHEMISTRY AND PERI CYCLIC REACTION (2 UNITS). Pre-requisite – CHM 303.

Interaction of radiation with matter electronic excitation; selection rules, deactivation routes; sensitization quenching; photofragmentation; oxidation reduction; rearrangements; pericyclic reactions and molecular orbital symmetry.

48. CHM 432 ORGANOMETALLIC CHEMISTRY II (2 UNITS). Pre – requisite- CHM 303.

organometallic compounds of the transitory elements. Classification of ligands, electron rules, bonding, preparation of organo transition metal compounds. Reaction and structure of organo transition elements. The organic chemistry of ferrocene and related compounds. The role of organometallic compounds in some catalytic reactions.

Introduction to

49. CHM 433 HETEROCYCLIC CHEMISTRY (2 UNITS). Pre – requisite CHM 303. The synthesis and mechanistic aspects of fused heterocyclic system particularly duinolines; Benzofurans; Benzothiophenes; iodoles Benzopyrylium salts; coumarances chromones. Application of heterocyclic system in drug synthesis.

50. CHM 434 SELECTED TOPICS IN INDUSTRIAL CHEMISTRY (2 UNITS).

Issues of topical interest selected from any of the following chemistry, mineral processing polymer and rubber technology, dyes. Pigments, water treatment, consumer products and pharmaceuticals.

51. CHM 435 CHEMISTRY OF COMPOUNDING AND PRODUCTION (2 UNITS).

An integrated laborer courses covering all the 400 level courses. Raw materials sources, formulation, roles of additives, chemistry of production, processes involved and characterization of the following: Domestic and surgical gloves balloons, toothpaste, some cosmetics. Silicate chemistry, soils, clay and ceramic production, e.t.c.

52. CHM 436 FOOD PROCESSING TECHNOLOGY (3 UNITS).

Analysis of food – proteins, carbohydrates, fats and oils, minerals, Vitamins, Crude fibre. An overview of small scale processing of local foods. Post harvest preservation and problems. Microbiological concept in food processing, legislation and NAFDAC regulations. FOOD CONSTITUTIONS: Desirable and undesirable constituentss of foods. ANALYSIS: Analysis of food products – proteins, carbohydrate. Fat and oils, minerals, vitamin; crude fibre. PROCESSING AND PRESERVATION: Overview of small scale processing of local foods- vegetables, tubers, cereals and fruits with special attention to food dehydration, cooling and freezing. Food canning, food additives and toxicology. Water activity, chemical and physical principles behind different methods of food processing and preservation. PRODUCTION: Production of wines, spirits, jams, juices, ice cream and selected milk products, margarine, vegetable oil, chocolate and selected Nigerian foods.

SECTION B

POSTGRADUATE PROGRAMMES

INTRODUCTION.

The graduate programme in the department leads to the award of Master of Science (M.Sc) degrees in Chemistry and Industrial Chemitry, while Doctor of Philosophy (P.hD) Degrees in the following areas:

- i. Analytical/Environmental Chemistry.
- ii. Inorganic Chemistry.
- iii. Organic Chemistry.
- iv. Physical Chemistry.
- v. Industrial Chemistry.
 - a) Industrial Inorganic Chemistry.
 - b) Industrial Organic Chemistry.
 - c) Polymer Chemistry

AIM OF THE PROGRAMME

The postgraduate prgramme in Chemistry involves prescribed course work carefully designed to expose the student to advanced theoretical chemical principles and concepts. Such a background will considerably assist the student in the understanding, interpretation and analysis of his /her experimental results from laboratory research, formulate concepts that have practical relevance to research and development, and to make sound empirical deductions on natural and large scale changes.

A. Masters Degree Programme (M.Sc):

ADMISSION REQUIREMENTS.

In addition to university matriculation requirements for admission into the undergraduate programmes in chemistry or industrial chemistry, candidates who possess any of the following qualifications may be considered for admission:

- i. At least a second class honours lower degree in chemistry, industrial chemistry or chemical engineering from Ambrose Alli University or any other recognise university.
- ii. At least a third class honour dgree in chemistry, industrial chemistry, chemistry education, chemical engineering or biochemistry with a post graduate diploma in chemistry from Ambrose Alli University or any other recognised University. The postgraduate deploma requirement may be waived for candidates with second class honours upper division in biochemistry or Chemical engineering.
- iii. At least a lower credit pass in Higher National Diploma (HND) in polymer Technology, Food Technology from a recognised polytechnic plus 60% average pass on postgraduate diploma in chemistry also from Ambrose Alli University or any other recognised University.

DURATION OF STUDIES: Four semester minimum.

COURSE DISTRIBUTION:

	Course cod	e Course title S	tatus	Credit/units
First	Semester			
1	CHM 701	Advance chemical kinetics	С	3
2	CHM 702	Co-ordination chemistry	С	3
3	CHM 703	Polyfunctional groups& aromatic chemistry with reaction mechanism	С	3
4	CHM 704	Electrochemical and optical method of Analysis	С	3
5	CHM 705	Advanced Environmental chemistry	R	3
Seco	ond Semester			
6	CHM 710	Reasearch project/thesis	С	6
7	CHM 711	Analysis of experimental data	С	3
8	CHM 712	Separation techniques	R	3
9	CHM 713	Applied spectroscop y	R	3
10	CHM 709	Presentation of, and Attendance at pre-&		0
		post data seminars	R	
Elect	tive courses			
11	CHM 714	Pericyclic reactions, heterocyclics, and synthesis methods		2
12	CHM 706	Moleculor spectroscopy		2
13	CHM707	Reactions in non-aqueous inorganic solvent systems	;	2
14	CHM 708	Organometallic chemistery		2
15	CHM 715	Radiation & photochemistry		2
16	CHM 716	Hydride chemistry & interstitial		2

CHM 717 Poly acids & silicates soil chemistry

T /	CI IIVI / 1/	r ory acras & sincates, son chemistry	2
18	CHM 718	Physical organic chemistry	2
19	CHM 719	Advanced polymer chemistry	2

STRUCTURE OF PROGRAMME.

- a) A student on the graduate programme in chemistry is normally required to achieve satisfactory performance in specified number of taught courses.
- b) All courses and their corresponding examinations shall be completed within the first year of the graduate programme.

2

- c) All courses are to be registered for according to the postgraduate school regulations.
- d) Research projects shall be embarked upon mainly in the second year of the M.Sc graduate programme.
- e) A compulsory seminar shall be given by each postgraduate student for the M.Sc on his/her research work before and after completion of research work.

REQUIREMENTS FOR GRADUATION.

To qualify for the award of M.Sc degree in chemistry, a student shall be required to pass a minimum of 30 units including core, required and elective courses. A student is required to choose two courses from the available elective courses to make up the required 30 units in addition to the core and required courses. Such elective course(s) should be chosen in accordance with the student's area of specialization. In addition, a student shall present at least two seminars- a pre and a post data presentation. Pass mark for all post graduate courses is 50%.

RESEARCH THESIS.

17

A STUDENT FOR THE M.Sc DEGREE PROGRAME shall be expected to undertake a research under two supervisors, major supervisor and co – supervisor. Research project shall normally be approved by the department Postgraduate committee chaired by the Head of Department. A student shall be expected to successfully defend the thesis in accordance with the post graduate school regulations.

Course Description for M.Sc Degree in Chemistry.

CHM701. Advanced Chemical Kinetics.

Experimental methods in gas phase and fast reactions in solution. Theoretical interpretation of reaction rates and application of vant Hoof equilibra for chemical equation and forcing functions, chemical relaxation times, amplitude and enthalpies. Temperature jump techniques including state, stopped – flow and temperature jump spectrophotometer.

CHM 702. Co – ordination chemistry.

Historical development of co ordination compounds; co – spectra; magnetic properties.

CHM 703. Polyfunctinal Groups and Aromatic Chemistry with Mechanism of Reactions.

The chemistry of aromatic compounds compared with their aliphatic counterparts, nitrile, Grignard reaction, chemistry of bifunctional compounds. Aldol and related reactions. Energetic, kinetics and the investigation of reaction mechanism. Simple alicyclic carbon compounds and their synthesis. Representative polycyclic compounds surveyed. Nomenclature and structure.

CHM 704 Electrochemical and optical methods of analysis.

Electrode processes; ion selective electrode; current potential, equations, D.C.A.C and pulse paleography; instrumentation of spectrometric analysis; polarimetry; refractometry and microscopic methods; their recent developments.

CHM 705. Advanced Environmental Chemistry.

Water chemistry; ecological aspects of surface and ground water chemistry; sources and characteristics of municipal and industrial wastewaters; water and wastewaters; sampling and analysis for chemical and bacteriological parameters. Water pollution control measures – biological and physico – chemical methods of treatment for disposal / recycling. Physical, Chemical, mineralogical and biological properties of soil, sources and nature of solid wastes, pollution and residual toxicity from application of pesticides and synthetic fertilizers. Disposal and management of solid wastes and their recycling. Chemistry of lower atmosphere; air pollution; method of analysis of air for various parameters.

CHM 706. Molecular Spectroscopy.

Application of quantum theory to the interpretation of absorption and emission spectra in terms of molecular properties, theories of electronic absorption and emission (florescence and phosphorescence), special intensities and polarization and transitions. Theory of vibrational and rational spectra. IR , Raman, Resonance Raman , F.S.R, NMR, Hyperfine splitting and g-factor. Simple magnetic resonance spectra.

CHM 707. Reaction in non – aqueous, Inorganic solvent systems.

Non – aqueous solvent system such as liquid ammonia; liquid H₂S; hydrogen cyanide; hydrogen fluoride and SO₂ reactions; uses.

CHM 708. Organometalic Chemistry.

Synthesis; structure and reactivity, bonding in transition metal compounds. Metal carbonyls, arenas; aryls; alkyls, cyclopentadienyls. Uses of organometallics commercially and in synthetic chemistry.

CHM 709 : Seminar- Attendance at all postgraduate Seminars are compulsory and are scored.

CHM 710. Research Project/Thesis.

CHM 711. Analysis of Experimental Data.

Evaluation of analytical data; statistical treatment of small sets of data; types of error in quantitative measurements; precision and accuracy; experimental.

CHM 712. Separation Methods In Chemistry.

Definition of Separation . The need for separation . Classification of separation methods . Physical versus Chemical methods . Decantatin, filtration , distillation, crystallization and precipitation. Solvent extraction, super-critical fluid extraction. Chromatographic methods : paper, thin-layer, gas –liquid , gas-solid, ion exchange , molecular exclusion. High performance liquid chromatography (HPLC), ultra-HPLC. Instrumentation in separation techniques . Method development for the separation of real samples. Determination of yield.

CHM 713. Applied Spectroscopy.

Fundamental concepts; definitions and law; instruments for measuring absorption of radiation: UV, Visible, infrared, and N.M.R. spectroscopy; mass spectrometry; limitations of spectrometry.

CHM 714. Pericyclic Reaction, Heterocyclic and Naturally Occurring Compounds and synthetic methods.

Ring formation and ring fission reaction and woodwor – Hofman Rules. Signatropic shifts. Indole, quinlines, imidazole and selected moncyclic heterocycles with 2N, NS and O, introductory alkaloids, trepenoid, coumarin and flavonoid chemistries and biogenesis, chemical fossils, organic synthetic strategies illustrated by the synthesis of three or more complex natural products; survey on general synthetic reaction and methods.

CHM 715. Radiation and Photochemistry .

Interaction of radiation with matter; Radiolysis of gases; liquids and solids; excited states; production and detection of free radicals, measurement of radical yield; application of radiation chemistry such as polymerization; sterilization; food preservation and radiobiology. Laws of photochemistry; intra and intermolecular processes; fluorescence and phosphorescence; thermo and chemiluminescence's; photosynthesis; photoelectron – chemical cells; lasers.

CHM 716. Hydride Chemistry and Interstitial compound. Hydrides of the elements of main groups 1 – IV; synthesis; physical properties and reactions; some interstitial and non – stoichiometric compounds; carbides; nitrides; borides and silicides.

CHM 717. Poly – acids and silicates, soil chemistry.

Condensation processes in polyacids; systems; heteropolyacids; structure of polyacids; polyphosphoric; silicates; Aluminosilicates; Zeolites.

CHM 718. Physical Organic Chemistry.

Physical methods of investigating reaction mechanism. Molecular orbital theories with emphasis on the Huckel theory and their chemical application; structure properties correlation; Mammett equation applications and modification – Okamoto and Brown Taft Nishioka and Fujita, etc. solvent effects and catalyses.

CHM 719. Advanced Polymer Chemistry.

Polymerization reactions, condensation and addition: Polyester; resin fibres; polyamides and linear and non – linear polymers; molecular size; it's control and reactivity; kinetic and molecular weight distributions ring formation; cross linking; gel point; ring – scission; electronic structure motion, termination and transfer; degree of polymerization transfer constant; cationic polymerization; anionic polymerization, living polymers; stereo specific polymerization; block and graft co – polymerization.

B. Doctorate Degree Programme (Ph.D).

In addition to university matriculation requirements for admission into the undergraduate programmes in chemistry and industrial chemistry candidates who posses any of the following qualifications may be considered for admission:

- i. First class honours degree in chemistry or industrial chemistry of Ambrose Ali University or any other recognised university.
- ii. A Master's degree in chemistry or industrial chemistry with 60% average of Ambrose Alli University Ekpoma or any other recognized university.

METHOD OF STUDY: Doctoral studies in Chemistry dept is by research work.

DURATION OF STUDIES: Minimum of six (6) semesters.

OTHER REGULATION GOVERNING POST GRADUATE PROGRMMES :

Other regulation governing method of application, registration, renewal of registration, approval of thesis title, standard and presentation of thesis/Dissertation, Board of examiners, submission of thesis, award of the degree etc is contained in the school of postgraduate prospectus.

C. Postgraduate Diploma Programme [PGDC] :

The postgraduate diploma programme in chemistry is primarily aimed at the remediation of the general chemistry background of Chemistry graduates who cannot proceed directly to the Master's degree programme for academic reasons, and for graduates of allied discipline who wish to later take a Master's degree in chemistry or industrial Chemistry. It is also meant for Higher National Diploma (HND) holders in relevant discipline from Polytechnics and other tertiary institutions who wish to obtain а Master's Degree in Chemistry or Industrial Chemistry. Candidates who posses any of the following qualifications may be considered for admission.

- i) At least third class honour's degree in chemistry, industrial chemistry, chemical engineering, biochemistry or chemistry education of the Ambrose Alli university or any other recongnised university.
- ii) At least lower credit pass in higher national diploma (HND) in polymer technology ,food technology or science laboratory technology (SLT) from recognized polytechnics.

DURATION OF STUDIES; Two (2) semesters minimum.

STRUCTURE OF THE PROGRAMME & GRADUATION REQUIREMENTS

The structure of the programme and requirements for graduation is as applicable to the Master's programme except that :

- 1. All courses are core
- 2.Only one project supervisor is required

3. Project defense panel will not require an external Examiner.

COURSE DISTRIBUTION :

	Course code	e Course title	Status	Credit/units
First	Semester			
1	PGDC 601	Physical Chemistry I: Gas Laws, physical properties & deductions.		
		Thermodynamics & Enthalpy Changes.	С	3
2	PGDC 602	Inorganic Chemistry I: Atomic theory &		
		Periodicity of the properties of Elements.	C	3
3	PGDC 603	Organic Chemistry I: Functional groups &		
		Aromatic chemistry with reaction		
		mechanism	С	3
4	PGDC 604	Analytical Chemistry.	С	3
5	PGDC 605	Experimental Chemistry (PRACTICALS)	С	3
	(CHM 304)			
	PGDC 606	Attendance at Pre- & Post- data Seminar	s C	3
Soco	ond Semester			
		Description of the set	6	<i>c</i>
6	PGDC 610	Reasearch project/thesis	Ĺ	6

7 PGDC 611 Physical Chemistry II: Chemical

		Equilibrium & Chemical Kinetics	С	3	
8	PGDC 612	Inorganic Chemistry II : Introductory			
		Organometallic Chemistry & Co-			
		ordination Chemistry	С	3	

9 PGDC 613 Organic Chemistry II : Reaction C 3 Mechanisms & Classification of Organic reactions.

Course Description for Postgraduate Diploma in Chemistry

PGDC 601: Physical Chemistry I – Deduction of Gas laws from kinetic gas equation, Distribution of molecular speeds, calculation of molecular speeds and collision properties. First Law of thermodynamics, thermodynamic terms, complete differential and homogeneous functions, work, heat and energy. Heat content (enthalpy), heat capacities. Spontaneous processes, conversion of heat to work.

1. PGDC 602: Inorganic Chemistry – Atoms, Molecules: Atomic structure; the development of the atomic theory, Electronic configuration – details of the spdf notations. The Periodic Table of elements, its evolution to present state and major classifications and relationships in the Table- e.g metals, transition metals, metalloids etc, theories of the classifications. Characteristics of each group and periods, Head element characteristics, Trends of properties across the periodic table such as- metallicity, non-metallicity, electronegativity, atomic & ionic radii etc, anomalies in the periodic table. Bond types and bond formation theories in inorganic compounds.

2. PGDC 603: Organic Chemistry - Functional group Chemistry and Aromaticity : Classification of organic compounds, nomenclature, homologous series; functional group (e.g alkanes, alkenes, alkynes, alcohols, phenols, thiols, aldehydes, ketone, carboxylic acids, ether, esters, amide, nitriles, haloalkanes, sulphoxides and sulphones. Basic stereochemistry, electronic theory in organic chemistry, saturated hydrocarbons; unsaturated hydrocarbons.

3.PGDC 604: Analytical Chemistry – Statistical methods in analysis, theory of sampling . Chemical methods of analysis including volumetric, gravimetric and optical methods . Introduction to potentiometric , electrolytic and radiochemical methods. Electromagnetic radiation and its interaction with matter. Electromagnetic spectrum ,UV and visible spectrophotometry, including atomic absorption spectrometry. Photometry,

fluorescence, X-ray and refractometry, Electroanalytical methods : polarography, amperometry and conductometry. Chromatography.

4.*PGDC 605: EXPERIMENTAL CHEMISTRY (PRACTICALS)- Selected important experiments designed to improve the practical skill of the students and to enhance their understanding of relevant theories. Topics contained in this package ensure a wide coverage of the diverse areas of chemistry.

5. PGDC 606 : Seminar- Attendance at all postgraduate Seminars are compulsory and are scored.

6. PGDC 610: Research Project/Thesis.

7. PGDC 611 : Reversible reactions , law of mass action . Relationship between Kc , Kp and Kx. Solutions, colligative properties, electrolytic conduction, ionic equilibrium ,electrochemical cells. Rate laws, collision theory, order of reactions (First, second and third) Molecularity of reactions.

8. PGDC 612: Introductory Organometallic Chemistry. Co – ordination compounds – definition, application, nomenclature, co – ordination formula and isomerism in complexes, stereochemistry of complex molecules. Theories of structure and bonding, physical methods of structural spectro-chemical series. The Nephhelaumzetic series and John Teller distortions. Stabilization of unusual oxidation states by complex formation. Thermodynamic stability of complex compound, the stability complexes, kinetics and mechanisms.

• Runs through the session.

9.PGDC 613: Factors affecting structure and physical properties of organic compounds; factors affecting directional movements of electrons in organic reactions; energy of activation; entrophy of activation; transition – state theory diagrams; free radical substitution reactions: in alkenes; organic reactions addition. Elimination, nucleophillic and electrophillic substitutions (displacement); aromaticity illustrated with benzene, aromatic electrophillic and nucleaphillic substitutions. Chemistry of terpenoids; and alkaloids; antibiotic flavonoids; prostaglandin and chlorophils. Other natural products of pharmaceutical importance.

LIST OF PAST HEADS OF DEPARTMENT

OSAYANMO I. EGUAVOE	N 1982-1987; 1990-1991; 2005-2006
STEVE A. OKECHA	1987-1990; 2000-2002
LINUS C. NDIOKWERE	1991-1995.
FELIX EGHAREVBA	1995-1997; 1999-2001; 2009
JUSTUS E. EBHOAYE	1997-1999; 2002-2005.
IMOHIMI O. ASIA	2006-2008;
MICHAEL O. OSUIDE	2008-2009; 2011-2013
VICTOR U. OKOJIE	2009-2011.
OSARO K. IZE-IYAMU	2013-2015.
EGHE E. EGBON	2016-2018.

LIST OF EXTERNAL EXAMINERS

Prof. FANIRAN - University of Ibadan- 1986-1992

- Prof. A AJAYI University of Ibadan- 1992-1994
- Prof. F. E. Okieimen University of Benin -1994-1999
- Prof. K.O. Ipinmoroti -The Fed. University of Tech. Akure-2008-2010.
- Prof. A.A. Oshodi- The Federal University of Technology, Akure-2010- 2012.
- Prof. C.A. Odilora Anambra State Universty, Uli, Anambra State. 2013-2014
- Prof. A.A. Oshodi- The Federal University of Technology, Akure-2015- 2017
- Prof E.Egboh Delta state University, Abraka, 2018-till date.

TABLE OF CONTENTS

Preface	ii
Table of contents	iv
History of the programmes/Discipline	1
Departmental Policy on Employment of Academic staff	1
Academic staff List	2
Non-Academic staff list	3
Administration of Programmes in General	4
Departmental Philosophy	5
Section A: Undergraduate Programmes	6
Admission Requirements	6
Examination Result Scoring and Grading	7
Course Outlines and Descriptions	10
Section B: Postgraduate Programmes	33
Master's Degree Programme	34
Doctorate Degree Programme	40
Postgraduate Diploma Programme	41
List of Heads of Department	46
List of External Examiners [Undergraduate]	46